Logo Search packages:      
Sourcecode: rglpk version File versions


/* glpgmp.h (bignum arithmetic) */

*  This code is part of GLPK (GNU Linear Programming Kit).
*  Copyright (C) 2000, 01, 02, 03, 04, 05, 06, 07, 08 Andrew Makhorin,
*  Department for Applied Informatics, Moscow Aviation Institute,
*  Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.
*  GLPK is free software: you can redistribute it and/or modify it
*  under the terms of the GNU General Public License as published by
*  the Free Software Foundation, either version 3 of the License, or
*  (at your option) any later version.
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
*  License for more details.
*  You should have received a copy of the GNU General Public License
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.

#ifndef _GLPGMP_H
#define _GLPGMP_H

#include <config.h>

#ifdef HAVE_GMP               /* use GNU MP bignum library */

#include <gmp.h>

#define gmp_pool_count        _glp_gmp_pool_count
#define gmp_free_mem          _glp_gmp_free_mem

int gmp_pool_count(void);
void gmp_free_mem(void);

#else                         /* use GLPK bignum module */

// Depending on its magnitude an integer number of arbitrary precision
// is represented either in short format or in long format.
// Short format corresponds to the int type and allows representing
// integer numbers in the range [-(2^31-1), +(2^31-1)]. Note that for
// the most negative number of int type the short format is not used.
// In long format integer numbers are represented using the positional
// system with the base (radix) 2^16 = 65536:
//    x = (-1)^s sum{j in 0..n-1} d[j] * 65536^j,
// where x is the integer to be represented, s is its sign (+1 or -1),
// d[j] are its digits (0 <= d[j] <= 65535).
// A rational number is represented as an irreducible fraction:
//    p / q,
// where p (numerator) and q (denominator) are integer numbers (q > 0)
// having no common divisors. */

struct mpz
{     /* integer number */
      int val;
      /* if ptr is a null pointer, the number is in short format, and
         val is its value; otherwise, the number is in long format, and
         val is its sign (+1 or -1) */
      struct mpz_seg *ptr;
      /* pointer to the linked list of the number segments ordered in
         ascending of powers of the base */

struct mpz_seg
{     /* integer number segment */
      unsigned short d[6];
      /* six digits of the number ordered in ascending of powers of the
         base */
      struct mpz_seg *next;
      /* pointer to the next number segment */

struct mpq
{     /* rational number (p / q) */
      struct mpz p;
      /* numerator */
      struct mpz q;
      /* denominator */

typedef struct mpz *mpz_t;
typedef struct mpq *mpq_t;

#define gmp_get_atom          _glp_gmp_get_atom
#define gmp_free_atom         _glp_gmp_free_atom
#define gmp_pool_count        _glp_gmp_pool_count
#define gmp_get_work          _glp_gmp_get_work
#define gmp_free_mem          _glp_gmp_free_mem

#define _mpz_init             _glp_mpz_init
#define mpz_clear             _glp_mpz_clear
#define mpz_set               _glp_mpz_set
#define mpz_set_si            _glp_mpz_set_si
#define mpz_get_d             _glp_mpz_get_d
#define mpz_get_d_2exp        _glp_mpz_get_d_2exp
#define mpz_swap              _glp_mpz_swap
#define mpz_add               _glp_mpz_add
#define mpz_sub               _glp_mpz_sub
#define mpz_mul               _glp_mpz_mul
#define mpz_neg               _glp_mpz_neg
#define mpz_abs               _glp_mpz_abs
#define mpz_div               _glp_mpz_div
#define mpz_gcd               _glp_mpz_gcd
#define mpz_cmp               _glp_mpz_cmp
#define mpz_sgn               _glp_mpz_sgn
#define mpz_out_str           _glp_mpz_out_str

#define _mpq_init             _glp_mpq_init
#define mpq_clear             _glp_mpq_clear
#define mpq_canonicalize      _glp_mpq_canonicalize
#define mpq_set               _glp_mpq_set
#define mpq_set_si            _glp_mpq_set_si
#define mpq_get_d             _glp_mpq_get_d
#define mpq_set_d             _glp_mpq_set_d
#define mpq_add               _glp_mpq_add
#define mpq_sub               _glp_mpq_sub
#define mpq_mul               _glp_mpq_mul
#define mpq_div               _glp_mpq_div
#define mpq_neg               _glp_mpq_neg
#define mpq_abs               _glp_mpq_abs
#define mpq_cmp               _glp_mpq_cmp
#define mpq_sgn               _glp_mpq_sgn
#define mpq_out_str           _glp_mpq_out_str

void *gmp_get_atom(int size);
void gmp_free_atom(void *ptr, int size);
int gmp_pool_count(void);
unsigned short *gmp_get_work(int size);
void gmp_free_mem(void);

mpz_t _mpz_init(void);
#define mpz_init(x) (void)((x) = _mpz_init())
void mpz_clear(mpz_t x);
void mpz_set(mpz_t z, mpz_t x);
void mpz_set_si(mpz_t x, int val);
double mpz_get_d(mpz_t x);
double mpz_get_d_2exp(int *exp, mpz_t x);
void mpz_swap(mpz_t x, mpz_t y);
void mpz_add(mpz_t, mpz_t, mpz_t);
void mpz_sub(mpz_t, mpz_t, mpz_t);
void mpz_mul(mpz_t, mpz_t, mpz_t);
void mpz_neg(mpz_t z, mpz_t x);
void mpz_abs(mpz_t z, mpz_t x);
void mpz_div(mpz_t q, mpz_t r, mpz_t x, mpz_t y);
void mpz_gcd(mpz_t z, mpz_t x, mpz_t y);
int mpz_cmp(mpz_t x, mpz_t y);
int mpz_sgn(mpz_t x);
int mpz_out_str(void *fp, int base, mpz_t x);

mpq_t _mpq_init(void);
#define mpq_init(x) (void)((x) = _mpq_init())
void mpq_clear(mpq_t x);
void mpq_canonicalize(mpq_t x);
void mpq_set(mpq_t z, mpq_t x);
void mpq_set_si(mpq_t x, int p, unsigned int q);
double mpq_get_d(mpq_t x);
void mpq_set_d(mpq_t x, double val);
void mpq_add(mpq_t z, mpq_t x, mpq_t y);
void mpq_sub(mpq_t z, mpq_t x, mpq_t y);
void mpq_mul(mpq_t z, mpq_t x, mpq_t y);
void mpq_div(mpq_t z, mpq_t x, mpq_t y);
void mpq_neg(mpq_t z, mpq_t x);
void mpq_abs(mpq_t z, mpq_t x);
int mpq_cmp(mpq_t x, mpq_t y);
int mpq_sgn(mpq_t x);
int mpq_out_str(void *fp, int base, mpq_t x);



/* eof */

Generated by  Doxygen 1.6.0   Back to index